Assessment of tissue oxygen saturation during a vascular occlusion test using near-infrared spectroscopy: the role of probe spacing and measurement site studied in healthy volunteers
نویسندگان
چکیده
INTRODUCTION To assess potential metabolic and microcirculatory alterations in critically ill patients, near-infrared spectroscopy (NIRS) has been used, in combination with a vascular occlusion test (VOT), for the non-invasive measurement of tissue oxygen saturation (StO2), oxygen consumption, and microvascular reperfusion and reactivity. The methodologies for assessing StO2 during a VOT, however, are very inconsistent in the literature and, consequently, results vary from study to study, making data comparison difficult and potentially inadequate. Two major aspects concerning the inconsistent methodology are measurement site and probe spacing. To address these issues, we investigated the effects of probe spacing and measurement site using 15 mm and 25 mm probe spacings on the thenar and the forearm in healthy volunteers and quantified baseline, ischemic, reperfusion, and hyperemic VOT-derived StO2 variables. METHODS StO2 was non-invasively measured in the forearm and thenar in eight healthy volunteers during 3-minute VOTs using two InSpectra tissue spectrometers equipped with a 15 mm probe or a 25 mm probe. VOT-derived StO2 traces were analyzed for base-line, ischemic, reperfusion, and hyperemic parameters. Data were categorized into four groups: 15 mm probe on the forearm (F15 mm), 25 mm probe on the forearm (F25 mm), 15 mm probe on the thenar (T15 mm), and 25 mm probe on the thenar (T25 mm). RESULTS Although not apparent at baseline, probe spacing and measurement site significantly influenced VOT-derived StO2 variables. For F15 mm, F25 mm, T15 mm, and T25 mm, StO2 ownslope was -6.4 +/- 1.7%/minute, -10.0 +/- 3.2%/minute, -12.5 +/- 3.0%/minute, and -36.7 +/- 4.6%/minute, respectively. StO2 upslope was 105 +/- 34%/minute, 158 +/- 55%/minute, 226 +/- 41%/minute, and 713 +/- 101%/minute, and the area under the hyperemic curve was 7.4 +/- 3.8%.minute, 10.1 +/- 4.9%.minute, 12.6 +/- 4.4%.minute, and 21.2 +/- 2.7%.minute in these groups, respectively. Furthermore, the StO2 parameters of the hyperemic phase of the VOT, such as the area under the curve, significantly correlated to the minimum StO2 during ischemia. CONCLUSIONS NIRS measurements in combination with a VOT are measurement site-dependent and probe-dependent. Whether this dependence is anatomy-, physiology-, or perhaps technology-related remains to be elucidated. Our study also indicated that reactive hyperemia depends on the extent of ischemic insult.
منابع مشابه
500 ml of blood loss does not decrease non-invasive tissue oxygen saturation (StO2) as measured by near infrared spectroscopy - A hypothesis generating pilot study in healthy adult women
BACKGROUND The goal when resuscitating trauma patients is to achieve adequate tissue perfusion. One parameter of tissue perfusion is tissue oxygen saturation (StO2), as measured by near infrared spectroscopy. Using a commercially available device, we investigated whether clinically relevant blood loss of 500 ml in healthy volunteers can be detected by changes in StO2 after a standardized ischem...
متن کاملMeasurement of cerebral tissue oxygenation in young healthy volunteers during acetazolamide provocation: a transcranial Doppler and near-infrared spectroscopy investigation.
Recent advances in near-infrared spectroscopy (NIRS) allow measurements of absolute tissue oxygen saturation (TOI) using spatially resolved spectroscopy (SRS), while enabling better depth sensitivity. However concerns remain regarding the relative contribution of the extracranial circulation to the cerebral NIRS TOI signal. In this study we investigated this during a period of selective rise in...
متن کاملNear infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care
Near infrared spectroscopy of the thenar eminence (NIRSth) is a noninvasive bedside method for assessing tissue oxygenation. The NIRS probe emits light with several wavelengths in the 700- to 850-nm interval and measures the reflected light mainly from a predefined depth. Complex physical models then allow the measurement of the relative concentrations of oxy and deoxyhemoglobin, and thus tissu...
متن کاملSimultaneous multi-depth assessment of tissue oxygen saturation in thenar and forearm using near-infrared spectroscopy during a simple cardiovascular challenge
INTRODUCTION Hypovolemia and hypovolemic shock are life-threatening conditions that occur in numerous clinical scenarios. Near-infrared spectroscopy (NIRS) has been widely explored, successfully and unsuccessfully, in an attempt to use it as an early detector of hypovolemia by measuring tissue oxygen saturation (StO2). In order to investigate the measurement site dependence and probe dependence...
متن کاملml of blood loss does not decrease non - invasive tissue oxygen saturation ( StO 2 ) as measured by near infrared spectroscopy - A hypothesis generating pilot study in healthy adult
BACKGROUND: The goal when resuscitating trauma patients is to achieve adequate tissue perfusion. One parameter of tissue perfusion is tissue oxygen saturation (StO2), as measured by near infrared spectroscopy. Using a commercially available device, we investigated whether clinically relevant blood loss of 500 ml in healthy volunteers can be detected by changes in StO2 after a standardized ische...
متن کامل